THE DYNAMIC INFORMATION ARCHITECTURE SYSTEM: AN ADVANCED SIMULATION FRAMEWORK FOR MILITARY AND CIVILIAN APPLICATIONS

By:

A. Peter Campbell and John R. Hummel Advanced Computer Applications Center Argonne National Laboratory Argonne, IL 60439-4832

7 April 1998

Presented To:
1998 Advanced Simulation Technologies Conference
Boston, Massachusetts

BRIEFING OUTLINE

- > Introduction to DIAS
 - Historical Overview
 - Key Features
 - GeoViewer
- DIAS Instantiations
- Summary

HISTORICAL OVERVIEW: DIAS SPONSORSHIP

WARS Joint Warfare System

USA Forces Command

South Florida Water Management District & USAE Corps of Engineers

Defense Modeling Simulation Office

USAF Air Weather Service

The Joint Staff/J-8 & DOE

Distributed Intelligent Agents for Logistics (DIAL)

USA Logistics Integration Agency

KARE*PLAN

Kaiser Permanente

HISTORICAL OVERVIEW: PURPOSE AND DESIGN GOALS

• DIAS Is a <u>Simulation Framework</u> Within Which New or "Legacy" Software Applications (Models, Databases, etc.) Can be Integrated to Operate in a Context-Driven Frame of Reference.

DIAS:

- Provides a Flexible and Extensible Mechanism to Allow Disparate (and Mixed Language) Software Applications to Interoperate.
- Captures the Dynamic Interplay Between Different Processes or Phenomena in the Same Frame of Reference.
- Accommodates a Broad Range of Analysis Contexts,
 With Widely Varying Spatial and Temporal
 Resolutions and Fidelity.

DIAS KEY FEATURES: COMPUTATIONAL ENVIRONMENT

- Fully Object-Oriented and Based on the Object Paradigm.
- Presently Hosted on UNIX Workstations. DIAS is Developed in a Mixed Language Environment
 - Basic Architecture in Smalltalk Supported With C and C++ Where Appropriate
 - Models/Applications Are Integrated in Whatever Language They Were Developed in (C, C++, FORTRAN, Modsim II, ...)
- Can Support a True Object Data Base Management System to Provide Persistence to DIAS Objects. Gemstone Currently Being Used

DIAS KEY FEATURES: REPRESENTATION OF THE ARCHITECTURE

DIAS KEY FEATURES: EXAMPLES OF DOMAIN OBJECTS

DIAS KEY FEATURES: EXAMPLES OF DOMAIN OBJECTS (Cont.)

DIAS KEY FEATURES: EXAMPLES OF DOMAIN OBJECTS (Cont.)

THE GEOVIEWER: AN ADVANCED SPATIAL DISPLAY TOOL

- DIAS Includes an Object-Based Geographic Information System (GIS) Component - the <u>GeoViewer</u> - That Can be Used to Display *Any* Spatial Data.
- Includes Full Dynamic Coupling With the Underlying Functionality in the Simulation
- Includes Full GIS Functionality: Layer Management, Extended Relational Queries, etc.
- All Entity Attributes Can Be Queried and Inspected.

GEOVIEWER (Cont.)

- The GeoViewer Can
 Use Data From
 Common Data
 Sources, NIMA,
 USGS, Tiger, ...
- Example: Newport Rhode, Island Using TIGER data

GEOVIEWER (Cont.)

Example of Querying Tools

- An Object Query
 Listing All Objects
 Within 100 Pixels of a Given Point (X)
- Objects Displayed within Layer Hierarchy
- Legend Information Included in Query Result

GEOVIEWER (Cont.)

Results Can Be Displayed in 2 or 3 D From Different Perspectives

BRIEFING OUTLINE

- Overview of DIAS
- > DIAS Instantiations
 - DEEM: Dynamic Environmental Effects Model
 - DIAL: Distributed Intelligent Agent for Logistics
 - KARE*PLAN: Health Care Simulation
- Summary

DYNAMIC ENVIRONMENTAL EFFECTS MODEL

DYNAMIC ENVIRONMENTAL EFFECTS MODEL

- Functionality Provided Includes Environmentally Dependent:
 - Vehicle Mobility
 - Divisional MobilityCorridors
 - Avenues of Approach and Named Areas of Interest
 - Line-of-Sight With Cloud
 Obscuration and Terrain
 Masking

DYNAMIC ENVIRONMENTAL EFFECTS MODEL

Advanced Hydrological Modeling

DISTRIBUTED INTELLIGENT AGENT FOR LOGISTICS

DISTRIBUTED INTELLIGENT AGENT FOR LOGISTICS

- With User-Supplied Rules, Agents Would Monitor Model Outputs and Identify "Significant" Differences Between the TPFDD and Predicted Time-Phased Data (e.g. PRLD, Equipment Arrival Dates, ...)
- Agents Would Recommend Alternate TPFDDs and/or Movement Strategies
- User Would be Notified if Agent Could Not Resolve Imbalances

DISTRIBUTED INTELLIGENT AGENT FOR LOGISTICS

KARE*PLAN

KARE*PLAN

SUMMARY

• DIAS Is a <u>Simulation Framework</u> Within Which New or "Legacy" Software Applications Can be Integrated to Operate in a Context-Driven Frame of Reference.

DIAS:

- Provides a Flexible and Extensible Mechanism to Allow Software Applications to Interoperate.
- Captures the Dynamic Interplay Between Different Processes or Phenomena

For More Information:

- A. Peter Campbell: campbell@dis.anl.gov
- John R. Hummel: hummel@athens.dis.anl.gov
- DIAS Homepage: http://www.dis.anl.gov/DIAS/

